

New Fire Retardant Fillers based on Modified Organoclays

Pranav Nawani, Mikhail Y. Gelfer, Priya Desai And Benjamin S. Hsiao

Departments of Chemistry Stony Brook University

Annual Fire conference April 3-4 2006, NIST

Polymer-Clay Nanocomposites

Morphology of Cloisite Organoclay

30°CBimodal
thickness
distribution

100 - 180°C
Unimodal thickness
distribution double layers

200 - 260 °C
Degradation,
surfactant loss organic layers

2.6 nm

5.2 nm

collapse collapse

2.6 nm

High temperature applications of organoclays restricted by insufficient thermal stability

2.4 nm

Langmuir 20, 3746-3758 (2004)

Hence a need to develop organoclays with increased thermal stability

We propose transition metal ions (TMI)
modification of organoclays

Why TMI (e.g. Fe and Cu)

- > TMI in the organoclay (organic components)
 - ➤ May promote chemical cross-linking, oxidative dehydrogenation and charring (chemical action)
- > In polymer matrix
 - ➤ May promote chemical cross-linking, oxidative dehydrogenation and charring (chemical action)
 - ➤ Drastically increased viscosity at high temperatures, reduce gas permeability (physical action).
- > Fe and Cu
 - ➤ Easy availability; well known solution chemistry

Modification of organoclays

Active catalytic sites

sis

Catalysis is the key

Increase in thermal stability and FR properties of composites

http://edu.chem.tue.nl

Chosen Materials

Interlayer ions in typical montmorillonite mineral clays d = 1 to 2 nm

Surfactants in interlayer region of C20A organoclay d = 1 to 3 nm

Ethyl vinyl acetate EVA8

contains - 8% mol. vinylacetate;

$$\mathbf{M_{w}} = \mathbf{110} \ \mathbf{Kg/mol}$$

Typical surfactant present in organoclays

2M2HT: dimethyl, dihydrogenatedtallow quaternary ammonium chloride wt% ~35% in C20 A

Transition metal ions slats (chlorides) and solvent like methanol etc.

Modification of Organoclays

- ➤ Pre-washing with desired solvent
- ➤ Modification by TMI solution

Surfactants are lost when ion exchanged with TMI

d-spacing

Oxidation state of TMI in Clay

Cu²⁺& Fe³⁺edge shifted to lower E in copper modified clays

 Cu^{2+} % Fe^{3+} is partially reduced => mixture of different oxidation state

TMI exist in more than one oxidation state in organoclays they might form complex with surfactants

TMI and thermal stability

In presence of TMI thermal stability of organoclays increases and onset in presence of Cu is highest

Reduction of Organoclays

- ➤ Reduction of TMI in gallery of silicates using sodium borohydrate.
 - 1) C20A, 2) C20A-Fe and 3) C20A-Cu

Change of color with addition of sodium borohydrate is indicative of reaction

Characterization Techniques

- ➤ Elemental Analysis (EA)
- Scanning and Transmission electron microscopy (SEM & TEM)
- ➤ Thermo gravimetric analysis (TGA)
- X-ray scattering
 - >SAXS / WAXD
- Extended X-ray Absorption Fine Structure (EXAFS)
- > Flammability tests
 - ► LOI and UL-94

Results

Elemental Analysis (wt%)

Material Analyzed	Montmor illonite	Montmorill onite - Cu	C20 A	C20 A washed	C20A Cu	C20A Fe		
Solvent may be trapped in montmorillonite								
Hy Structural iron in montmorillonite and non								
Ni structural iron in C20A								
Cu m	ay be red	duced and	CuCI	may be	trapp	.00		
Chlorine	0.00	<0.1	0.00	0.00	3.50	<0.1		
Iron	0.90	0.93	1.74	1.56	0.94	4.13		
Sodium	4.17	0.19	<0.5	<0.5	0.00	0.00		

Schwarzkopf Microanalytical Lab, Inc., (Queens, NY).

SEM

Organoclay C20A as received

~15 μm

Organoclay C20A modified with copper

No deposits of TMI on the surface of closite Similar results were obtained for other TMI

WAXD of C20A Organoclay

No additional sharp peaks in presence of TMI TMI is not deposited on surface of clay stacks

TEM

EVA 350 C20A 10wt%

EVA 350 C20A Cu 10 wt%

No aggregation is observed indicating dispersion remains homogeneous even for TMI modified clays

Clay tactoids break suggesting intercalated-exfoliated mix

3D - TEM

EVA 350 C20A Cu10wt%

No deposits of TMI on the surface of closite Similar results were obtained for other TMI

Structure Analysis by SAXS

C20A organoclay modified with various TMI (Cu²⁺ and Fe³⁺) compared with that of C20A as received and washed with methanol.

Solid line is for calculated and lines with symbols are experimental data.

Shift in d- spacing indicates intercalation of TMI takes place within the layers of clays

SAXS trace for composites

SAXS trace for clay

Structural rearrangement at 30-80°C; during heating above 80°C and cooling from 260°C structure remains stable => high thermal stability in the presence of TMI (TGA)

s [nm⁻¹]

1.0

s [nm⁻¹]

30°C cool

260°C

200°C

▶ 100°C

X-Ray Results

- > d-spacings change
 - >TMI ions penetrate into the interlayer region
 - ➤ d-value may be affected by status of TMI (ions, aggregates, reduction, colloid particles or complexation of TMI)
- ➤ Improved thermal behavior in TMI modified Cloisite, hence we can say TMI helps in improving thermal stability.
 - ➤ Similar results obtained from TGA thermograms.

SAXS trace for composites

Cu modified

d-decreases

Decrease of d-spacing
from 80-200 °C
Loss of features less
pronounced than in pure
C20 A system above 200
°C =>higher stability of
organoclay

0.2 0.4 0.6 0.8 **s [nm⁻¹]**

SAXS trace for composites

Fe Modified

d-decreases

Decrease of d-spacing from 80-200 °C;

Loss of features less pronounced than in pure C20A system above 200 °C =>higher stability of organoclay

X-Ray Results

- > d-spacings changes and peak broadens
 - ➤ Intercalation takes place
 - ➤ Partial exfoliation possible
- Improved thermal behavior in TMI modified Cloisite EVA composites,
 - ➤ Hence we can say TMI helps in improving thermal stability.
- ➤ Similar results obtained from TGA thermograms.

TGA data for nanocomposite

Rheological Measurements

Rheological Measurements

EVA Pure C20A 10%

EVA Cu modified C20A 10%

Test of Flammability: LOI

	Oxygen Index values			
Sample	0 wt% MgOH	5 wt% MgOH		
Eva NEAT	19.19	_		
Eva C20A	19.35	20.94		
Eva C20A Cu	19.25	19.55		
Eva C20A Cu (reduced)	19.25	19.45		
Eva C20A Fe	19.72	21.52		
Eva C20A Fe (reduced)	19.78	21.63		

In accordance to our data of SAXS and TGA where Fe modified clay composite showed higher thermal stability

Test of Flammability: UL-94

Sample (10wt% of filler)	0% MgOH	50% MgOH
Eva NEAT	V2	-
Eva C20A	V1	VO
Eva C20A Cu	V1	VO
Eva C20A Cu (reduced	V1	VO
Eva C20A Fe	V1	VO
Eva C20A Fe (reduced)	V1	VO
Eva Phosphonium	V1	VO
Eva Phosphonium Cu	VO	VO

Preparation of Organoclays by Exchanging Sodium Cations with Surfactant

Surfactants: *N, N, N,*-tributyl-*N*-hexadecyl phosphonium bromide3

Phosphonium montmorillonite

With TMI (Cu²+) modification, structure is more stable at higher temperatures hence thermally stable filler

Summary

- ➤ Efficient modification of organoclays can be achieved by treating them with TMI salt solution
 - ➤ SEM, WAXD and SAXS results prove that TMI can be intercalated in organoclays.
- TMI modification result in the shifting of the onset of degradation of organoclays towards higher temperatures, hence thermally stable.
- ➤ TMI modified organoclays in EVA matrix may promote cross-linking, high viscosity and charring thus may increase their FR properties.
 - > Effect of Fe was more prominent than Cu
- ➤ With Phosphonium surfactant montmorillonite was thermally more stable

Future work

- ➤ Elucidating the role of structural and nonstructural iron.
- ➤ Testing synergic blends of TMI-modified organoclays with other additives and conventional FR agents
- Using thermally stable surfactants
- > Testing different polymer matrices
- > Using the polymer blends for nanocomposite
- Detailed study of SAXS for understanding dispersion of organoclays and polymer nanocomposites

Acknowledgements

- Lixia and Igors at BNL
- Gregory Rudomen, University Microscopy Imaging Center S.U.N.Y Stony Brook
- > Andy Tsou at Exxon Mobil

Final Support Provided by The Fire Division,

National Institute of Standards and Technology